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S1 Plasma and metallic-network meta-material modes

S1.1 Single plasma fluid model

We begin with a single plasma fluid model for an ideal warm plasma [61]. This model consists of a
set of three equations describing the charge carrier (CC) dynamics,

∂n

∂t
+∇ · (nu) = 0 (S1a)

m

(
∂ nu

∂t
+∇ · [nu⊗ u]

)
= −∇P + ρE (S1b)

d

dt

(
Pn−γ

)
= 0 . (S1c)

Eq. (S1a) is the continuity equation of CC conservation, where n(r, t) is the CC volume density
field and u(r, t) is the CC velocity field. Eq. (S1b) is the Navier-Stokes equation for the electrically
excited CC liquid, where we ignore shear forces, the non-linear magnetic field contribution in the
Lorentz force density, and gravitational contributions. In this equation, ⊗ is the outer product, m
the effective mass of the charge carriers, P (r, t) the CC liquid pressure field, and ρ(r, t) := qn(r, t)
the CC charge density. We note that a kinetic pressure term is present in any liquid. Here, P should
be understood as the total mesoscopic pressure based on the microscopic statistical ensemble of CCs,
including inter-particle Coulomb interactions. Finally, Eq. (S1c) is a local adiabatic equation with the
adiabatic index γ, which can be rigorously derived from an energy balance equation in the limit where
the flow velocity is much larger than vicious and thermal diffusion velocities. These fluid equations
are closed with the Maxwell curl equations, which describe the electromagnetic field dynamics. In
Lorentz-Heaviside units,

∇×E = −1

c

∂H

∂t
(S2a)

∇×H =
1

c

(
∂E

∂t
+ j

)
, (S2b)

with E(r, t) and H(r, t) the electric and magnetic fields, respectively, c the speed of light in vacuum,
and j(r, t) := ρ(r, t)u(r, t) the current density of the plasma charge carriers.
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We now linearize Eq. (S1) assuming small variations in the density and pressure

n(r, t) := n0 + δn(r, t)

P (r, t) := P0 + δP (r, t)

and thus small velocities u(r, t) to arrive at

∂δn

∂t
+ n0∇ · u = 0 (S3a)

mn0
∂ u

∂t
= −∇δP + ρE (S3b)

d

dt

(
δP − γ

P0

n0
δn

)
= 0 . (S3c)

Since δP =0 if δn=0, Eq. (S3c) is solved by δP = γP0 δn/n0. Finally, since Eq. (S2) and Eq. (S3)
are now both spatiotemporally homogeneous and linear in all fields, we can make a plane wave ansatz
n(r, t) :=n exp{ı(k·r−ωt)}, etc., such that the field symbols represent their constant coefficients from
this point on to obtain

ck×E = ωH (S4a)

−ck×H = ωE+ ıj (S4b)

ωδn = n0k · u (S4c)

ωmn0u = −k
γP0

n0
δn+ ıqn0E . (S4d)

We now introduce the plasma frequency ω2
p :=n0q

2/m, the plasma wave number kp :=ωp/c, and
the dimensionless pressure parameter κ2 := γP0/(n0mc2), to obtain a k-family of linear Hermitian
eigenproblems

H(k)v =
ω

ωp
v (S5)

for the eigenvalue ω/ωp. The eigenvector is defined as

v :=


E
H

κ
kp
q δn
1
ωp

j

 .

The dimensionless matrix operator

H :=

(
Hfield Hint

H†
int Hfluid

)
, (S6)

which we from now on refer to as Hamiltonian, has the sub-blocks

Hfield :=
1

ıkp
σy ⊗K× , Hint :=

(
1
0

)
⊗
(
0 −ı13

)
, and Hfluid :=

κ

kp

(
0 k†

k 0

)
.

Here, we have used the Pauli spin matrix σy, the vector product matrix K×w :=k×w, the

Kronecker (tensor) product ⊗, the zero vector 0 and matrix 0 of dimension 3, and the identity

matrix 1d of dimension d; A† denotes the Hermitian adjoint of A.
The problem is, of course, isotropic so that we can choose the coordinate frame such that k= k ez

without loss of generality. The eigenproblem Eq. (S5) predicts a four-fold degenerate zero-frequency
band ω(k)= 0. The associated eigenspace is spanned by two spurious longitudinal modes, which
violate the Maxwell divergence equations, and the static magnetic field solutions generated by a
transverse current density (

Hx

Hy

)
= −kp

k
σy

(
jx
jy

)
at constant charge δn =0 and vanishing electric field.
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Fig. S 1: Dispersion relation of a single plasma fluid with thermal coefficient κ=0.4. It has a
longitudinal Langmuir (LMW) and a doubly-degenerate electromagnetic wave (EMW) band.

Note that the system is particle-hole symmetric [62], that is, for every eigenvector v of H(k) with
energy ω, there is one particle-hole symmetric eigenvector v∗ with energy −ω. Thus we show only
the positive frequency bands in Fig. S1. They follow the longitudinal mode Langmuir dispersion1

ωl

ωp
=

√
1 +

(
κkl
kp

)2

(S7)

with fields E= ez, H=0, δn= ıkl

q , and j= ıωlez; and the two-fold degenerate transverse light mode
dispersion

ωt

ωp
=

√
1 +

(
kt
kp

)2

(S8)

with fields E± = ex±ıey, H± = ckt

ωt
(ey∓ıex), δn=0, and j=

2ıω2
p

ωt
E± .

S1.2 Metallic network metamaterial modes

At low frequencies in the microwave regime, metals act like perfect electrical conductors (PECs),
which do not support propagating modes in the bulk. We can reduce the CC density by employing
plasmonic metal wires to introduce an effective plasma frequency for excitations in the wire direction
while maintaining the lossless PEC character . A 3D metallic pcu [64] wire-mesh with sub-wavelength
period therefore effectively generates a lossless plasma at microwave excitations. Based on [38], we
here formally show that the electro-dynamic theory of the metallic pcu network in the long wavelength
limit is indeed equivalent to the single plasma model with a constant pressure parameter κ = 1/

√
3.

We use the macroscopic constitutive relations from [38] that have been derived for a square lattice
of aligned wires (along ez) in the homogenization picture. We start with the current I(z) and the
electric potential V (z) between neighbouring wires. A comparison of the magnetic flux through a
rectangle of infinitesimal height with the corresponding boundary integral (Ampére’s law in integral
form) yields (assuming a plane wave form)2

kzV = ωLI − ı⟨Ez⟩, (S9)

with the self-inductance per unit length of the wires in the mesh L= 1
2πc2 log

(
a2

4r(a−r)

)
that is a

simple consequence of the Biot-Savart law for the individual wires and only depends on the lattice
constant (nearest neighbour distance) a and the wire radius r. The potential between neighbouring
wires is, on the other hand related to the linear charge density λ(z) via the linear relation λ=CV with

1Note that we do not normalize fields and choose the electric and magnetic field without dimension (instead of their
standard cgs unit g1/2cm−1/2s−1) here for convenience.

2Note that we here use the physics convention for the monochromatic ansatz exp{−ıωt} and Lorentz-Heaviside
units in contrast to [63].
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the effective capacitance per unit length C =1/(c2L) that is obtained using Gauss’ law. Combining
this relation with charge conservation kzI =ωλ leads to

kzI = ωCV . (S10)

Eq. (S9) and Eq. (S10) can be readily generalized to a 3D connected pcu wire-mesh: Eq. (S9) simply
acquires full vector form with kz 7→ k, I 7→ a2⟨j⟩, and ⟨Ez⟩ 7→ ⟨E⟩. A factor of 1/3 effectively reduces
the linear charge density as the charges spread over three wires in each direction in the unit cell, and
the pcu network is fully connected. A more rigorous treatment for wires of finite radius reveals that
this factor is indeed better approximated by [54]

κ2 =
1 + 2

k2
p

k2
1

3
, (S11a)

with the plasma wavenumber
kpa

2π
=

 ∑
(m,n)∈N2\(0,0)

J2
0

(
2πr
a

√
m2 + n2

)
m2 + n2

(−1/2)

, (S11b)

and
k1a

2π
=

 ∑
m∈N\0

J2
0

(
2πr
a m

)
m2

(−1/2)

. (S11c)

In practice, the wire-mesh pressure parameter falls in a range between κ≈ 2/3 for a wire radius of
r= a/100 and κ≈ 3/4 for r= a/5. Rearranging, we obtain

ı⟨E⟩+ kV = ωa2L⟨j⟩ (S12a)

κ2a2k · ⟨j⟩ = ωCV . (S12b)

Defining the plasma frequency as the cut-off frequency of the aligned wire mesh [37]k2pa
2 :=C, which

is indeed a good approximation of the definition in Eq. (S11b), and the field vector

v :=


⟨E⟩
⟨H⟩
κ
kp
V

⟨j⟩/ωp

 ,

we formally arrive at the above eigenproblem Eq. (S5) with a κ that is confined in a small interval
and only weakly depends on the geometrical parameters of the wire-mesh. We finally note that the
scaled potential κ

kp
V equals the scaled CC density κ

kp
qδn from Sec. (S1.1) if we associate the linear

charge density along the PEC wires per unit cell area λ/a2 with the charge density ρ of the plasma, so
that the field vector v is identical in both models. Fig. S2 shows the bandstructure obtained through
a full-wave simulation, which agrees well with the single plasma fluid model shown in Fig. S1. The
two modes in Fig. S2(b) correspond to the longitudinal (LMW) and transverse (EMW) modes in Fig.
S1.

S1.3 Hydrodynamical double plasma fluid model

We now consider a plasma consisting of two CC species of respective charge qi, mass mi, and equi-

librium CC density n
(i)
0 and pressure P

(i)
0 (i=1, 2). The associated plasma frequencies, plasma wave

numbers, and pressure parameters are ωpi, kpi, and κi. We further assume that CC interact only
amongst their own species, which is physically, of course, only possible in a universe where particles
of a different type do not interact (via Coulomb forces or otherwise). The theory is, however, approx-
imately valid if the interaction is weak or if the two charge carriers are separated on a mesoscopic
scale.

In the prescribed situation, the corresponding fluid equations Eq. (S4c) and Eq. (S4d) separate
into two individual equations, while both current densities contribute to the Ampère-Maxwell law
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Fig. S2: (a) Single metallic wire-mesh with radius r=0.02a. (b) Dispersion relation of (a).

Eq. (S4b),

ck×E = ωH (S13a)

−ck×H = ωE+ ı

2∑
i=1

ji (S13b)

ωδni = n
(i)
0 k · ui (i = 1, 2) (S13c)

ωmin
(i)
0 ui = −k

γP
(i)
0

n
(i)
0

δni + ıqin
(i)
0 E (i = 1, 2) . (S13d)

In the context of our analysis, we are examining a broader scenario where the plasma frequency of
the two distinct electron species is not equal. Specifically, we are making the assumption that ωp1

and ωp2 are different, with real quotient m=
ωp2

ωp1
. As demonstrated in Sec. (S1.1), we can express

the Hamiltonian for HDP in the following form:

HHDP(k)vHDP =
ω

c
vHDP (S14)

where

HHDP :=

( HHDP
field HHDP

int(
HHDP

int

)† HHDP
fluid

)
, (S15)

with the sub-blocks

HHDP
field := −ıσy ⊗

K

kp1
,HHDP

int := −ı
(
1 m

)
⊗
(
1
0

)
⊗
(
0 13

)
and

HHDP
fluid :=

(
κ1 0
0 κ2

)
⊗
(
0 k†

k 0

)
.

In analogy to Sec. (S1.1), the eigenvector can be defined as

v :=



E
H

κ1

kp1
q δn1
1

ωp1
j1

κ2

kp2
q δn2
1

ωp2
j2


.

Similar to the single plasma, the HDP Hamiltonian yields an EAW and a Langmuir band. The
dispersion of the transverse band and Langmuir band can be expressed as

ωt

c
=
√
k2p1 + k2p2 + k2t (S16)

v



ωl

c
≈

√√√√k2p1 + k2p2 +

[
1 + 2

k2p2 − k2p1
k2p2 + k2p1

κ2 − κ1

κ2 + κ1

]
κ2 k2l (S17)

Apart from the previously mentioned modes, an additional mode called the electron acoustic wave
(EAWs) is found, which extends from zero frequency to the double plasma effective plasma frequency

at
√

k2p1 + k2p2. The eigenproblem Eq. (S14) can be solved algebraically by employing any standard

computer algebra tool. However, a more convenient and elegant manual solution can be obtained
using the k · p perturbation theory at the Γ-point. It is worth noting that this method is precise
when used to analyze the EAW band, as demonstrated below.

The general approach [48]can be briefly summarized as follows: First, we expand the eigenstates at
a specific k=k0+δk (where k0 =0 at the Γ-point) in reciprocal space using the basis of eigenstates
at k0, with δk having infinitesimal length. Assuming that the solution of the Hamiltonian at k0

is known for the eigenspace U associated with a particular eigenvalue λ0 :=ω(k0)/c, we define the
orthonormalized eigenvectors uα that span U as follows:

H(k0)uα = λ0uα .

If the components of the Hamiltonian are analytical at k0, we obtain in first order in δk,

H(k0+δk) = H(k0) + δk · [∇kH] (k0)︸ ︷︷ ︸
=: δH

.

At the perturbed point k0+δk, the eigenvectors vn are an element of U in zero order perturbation
theory. This immediately yields the identity (using Einstein notation),

vn = (uα · vn)uα := c(n)α uα .

As a result, the eigenvalue equation at k0+δk becomes

[λ0 + δH] c(n)α uα = λnc
(n)
α uα .

Upon testing with uα, we obtain its weak form, which is an algebraic eigenvalue equation that
has the dimension of U ,

uα · (δHuβ)︸ ︷︷ ︸
=:Hαβ

c(n)α = (λn − λ0) c
(n)
α . (S18)

In other words, the deviation of the dim(U) eigenvalues λn from λ0 is given by the eigenvalues of
the effective Hamiltonian Hαβ , whose entries are the matrix elements of the first order perturbation
δH in U .

Since H is linear in k for the HDP Hamiltonian Eq. (S15), the first order expansion is exact, that
is HHDP =H0+δH with

H0 =

(
0 Hint

H†
int 0

)
and δH =

(
Hfield(δk) 0

0 Hfluid(δk)

)
.

Since we are interested in the eigenspace of H0 at vanishing frequency, we are searching for its
kernel, which is 8-dimensional and contains arbitrary H, arbitrary V1 or V2, and arbitrary j1 =−j2,
with all other fields vanishing. Labelling the field components in uα with i and disregarding the
trivial electrostatic solution with H ̸= 0, we thus obtain the 5-dimensional eigenspace matrix with
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orthogonormalized eigenvectors as rows

Uiα =
1√

k2p1 + k2p2



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0√

k2p1 + k2p2 0 0 0 0

0 0 kp2 0 0
0 0 0 kp2 0
0 0 0 0 kp2

0
√
k2p1 + k2p2 0 0 0

0 0 −kp1 0 0
0 0 0 −kp1 0
0 0 0 0 −kp1



.

The effective Hamiltonian is thus

Hαβ = UiαδHijUjβ =

[
0 h
h⊺ 0

]
, (S19)

where

h =
1√

m2 + 1

[
κ1kxm κ1kym κ1kzm
κ2kx κ2ky κ2kz

]
.

Three of the eigenvalues of the perturbation Hamiltonian in Eq. (S19) are zero. In addition, we
reproduce the EAW band in Eq. (S1.3) and its chirally symmetry counterpart:

ωa
2 =

m2 + κ2
2

κ1
2

m2 + 1
κ1

2c2ka
2,

A noteworthy observation is that as κ1 approaches κ2, the slope of the EAW is only minimally
affected by changes in the plasma frequencies. This is particularly evident when κ1 equals κ2, in
which case the dispersion relationship can be represented as λ=κ1cka, and is independent of the
plasma frequency.

S1.4 Plasmonic double net metamaterials

As we have shown in Sec. (S1.2), a PEC pcu wire-mesh acts like a single plasma in the homogenization
regime, that is, if the Bloch wavevector of the mode satisfies |k|≪ 2π/a. We use the parameter vector
P := (r1/a, r2/a,R) to define a pcu double network, where ri are the individual network radii, a the
cubic lattice constant, and R is the offset in each Cartesian direction so that the two networks are
separated by a shift vector S := (1, 1, 1)⊺ R. Assuming that the networks are well separated, the DNM
fields, therefore, obey Eq. (S13) with the substitutions discussed in Sec. (S1.2).

The two networks generally exhibit different plasma frequencies ωpi that depend on ri and lie
approximately between kpa/(2π)= 1/5 for r=1/100 and kp(2π)= 3/5 for r=1/5. The pressure
parameters are generally also different, but contained in a very small interval between κ=2/3 and
κ=3/4, so that it is useful to introduce κ1 :=κ−δκ and κ2 :=κ+δκ with δκ≪κ. The canonical field
vector of the double wire mesh is, therefore

vDN :=



⟨E⟩
⟨H⟩

κ−δκ
kp1

V1

⟨j1⟩
κ+δκ
kp2

V2

⟨j2⟩

 .
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The eigenproblem can be written as

HDN(k)vDN =
ω

c
vDN (S20)

with the associated Hamiltonian

HDN :=

( HDN
field HDN

int(
HDN

int

)† HDN
fluid

)
, (S21)

with the sub-blocks

HDN
field := −ıσy ⊗K×, H

DN
int := −ı

(
kp1 kp2

)
⊗
(
1
0

)
⊗
(
0 13

)
and

HDN
fluid :=

(
κ−δκ 0
0 κ+δκ

)
⊗
(
0 k†

k 0

)
.

With k= kez w.l.o.g. because of the isotropy of the problem, this double-net eigenproblem yields
the longitudinal band

ωl

c
≈

√√√√k2p1 + k2p2 +

[
1 + 2

k2p2 − k2p1
k2p2 + k2p1

δκ

κ

]
κ2 k2l (S22)

with fields E ∥ ez , H = 0 , and ji =∥ ez ; and the two-fold degenerate transverse light band

ωt

c
=
√
k2p1 + k2p2 + k2t (S23)

with E± = ωt

c (ex±ıey) , H± = kt (ey∓ıex) , Vi± = 0, and ji± = ıkpi (ex±ıey). Similar to Sec.
(S1.1), the zero-frequency band is 6-fold degenerate, with two spurious longitudinal solutions and
now four transverse current modes with(

Hx

Hy

)
= −kpi

k
σy

(
jix
jiy

)
(S24)

and all other fields are vanishing.
Importantly, a new fundamental band appears below the plasma frequency. It emanates at the Γ-

point at ω=0 with a constant slope as shown in the main manuscript in Figure 1(b). The associated
modes are reminiscent of acoustic waves in a conventional fluid but with two species of charges
fluctuating in opposite directions. The dispersion relation is

ωa

c
≈

(
κ+

k2p1 − k2p2
k2p1 + k2p2

δκ

)
ka, (S25)

with fields (in leading order in δκ) E= δκkez,H=0, Vi =−ıκ(−1)i(k2p1+k2p2)/(4k
2
pi) and ji =

kp1

κ Viez.
As we can see, the magnetic field of the EAW is strictly zero, while the electric field is longitudinal
and linearly depends on both δκ and k. In the real DNM structures, since the HDP model is only
approximately valid, the electric field of the low-frequency mode obtains an additional longitudinal
term that is zero order in δκ and quadratic in k. We demonstrate this behavior in the main text
Fig. 2(a), by averaging the fields obtained through full-wave simulations for three different DNM
geometries. The x-component increases quadratically when moving away from the Γ-point by k ∥ ex in
all the three different DNM geometries, while the y and z components vanish. Typically, the additional
linear dependence on δκ/κ is negligible and can be disregarded. For example, if P =(0.4, 0.1, a

2 ), the
ratio is δκ/κ≈ 0.03.

The slope of the EAW band only weakly depends on the difference in plasma frequencies of
the two networks in first order δκ. Moreover, in DNMs, the accumulation of current in each metal
network is evenly distributed into three parts along the x, y, and z directions due to the perpendicular
intersection of metal lines at the nodes. This results in δκ=0, which is why the slope of the EAW
band is predominantly determined by the pressure parameter κ alone. Additionally, it is worth noting
that the dispersion of the EAW band in the low-frequency limit remains robust against changes in
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Fig. S3: (a) the corresponding band structures of DNMs with fixed radius of r = 0.3 mm and
varying relative distance R = a/2(1, 1, 1), 2a/5(1, 1, 1), and a/3(1, 1, 1); (b) bandstructures of
DNMs with a fixed offset of a/2(1, 1, 1) of two identical wire meshes. The radii are 0.1, 0.3 and 0.6
mm, respectively; Black dots are full-wave simulations, blue dash lines show the 1√

(3)
slop and the

red dash lines are the results from HDP model

DNM parameters, such as the radius of the metal wires and the relative offset between the two nets.
This assumption has been confirmed through simulations of DNMs with various parameters, as shown
in Fig. S3 and discussed in Sec. (S2). In the limit of small radii, the dispersion of fundamental EAW
modes in DNMs can be approximated as

ωa ⪆
1√
3
kac, (S26)

To summarize, the EAW modes in DNMs are characterized by a quasi-longitudinal nature and
an exact dispersion relationship that only weakly depends on the particular geometrical parameters.

S2 Bandstructure of DNMs with different parameters

DNMs were homogenized using an HDP model in Sec. (S1.4). We showed that the EAW mode in
DNMs can be represented by two species of charged particles moving in opposite directions. Using
this model, we derived an exact dispersion relation Eq. (S1.3) in the long wavelength limit. The
dispersion relation mainly depends on the average pressure parameter of the two networks, which is
κ ⪆ 1/

√
3. To validate this finding, we conducted numerical simulations on DNMs with varying radii

(Fig. S3(a) and relative positions (Fig. S3(b).
In Fig. S3(a), we begin with two wire meshes with a fixed relative space offset a/3(1, 1, 1) and

different plasma frequencies tuned by the equal radius of the two wire meshes from 0.02 a, over 0.06 a,
to 0.12 a. The corresponding band structures are shown in Fig. S3(b). The black dots are from full
wave simulations, while the blue lines show the limiting ω/c= 1√

3
k dispersion. As expected, the DNM

slope in the vicinity of the Γ-point is larger in all three cases and approaches the limit for small radii.
The model is of course invalid when approaching the X-point due to the intrinsic non-homogeneous
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and periodic nature of the DNM structures. In Fig. S3 (b), we demonstrate DNMs with various
offsets while keeping the plasma frequency of both nets equal and constant (the radius is 0.08 a).
The results are again consistent with the theoretical expectation from the HDP model. Upon close
inspection, the low-frequency slope approaches the blue limit when the two networks come closer
together.

S3 Different double network geometries

While our theory above has been rigorously derived for the pcu double network only, the two main
physical features are inherent to the plasmonic double network topology and symmetry rather than
the particular geometrical realization. These features are the slope of the EAW band in the low-
frequency limit and the longitudinal nature of the homogenized electric field. We here demonstrate
that both features are indeed observed for two other known lowest genus double net geometries:
the balanced double gyroid (srs-c, Ia3d symmetry) and double diamond (dia-c, Pn3m symmetry)
morphologies (abbreviations as in [58]).

Let us first re-examine the longitudinal nature from a symmetry perspective. In the quasi-static
limit, a non-trivial solution to the Poisson equation requires the two nets to be on different potentials
[41]. Three situations can generally be distinguished

1. the two nets are only interchanged by one or more space group elements S with point symmetry
part that is not the identity3,

2. the two nets are interchanged by a primitive lattice translation4,

3. the two nets are no symmetry copy of one another5.

The cubic examples discussed here all belong to the symmetric cases 1 and 2. In these cases, the square
S2 of the symmetry operation that exchanges nets evidently maps the two nets onto themselves. The
potential is, therefore, unchanged by S2 as the individual nets are short-cut in the quasi-static limit.
As a consequence, S yields a multiplication of the potential by −1, and the two nets must hence be
on opposite potential. In case 1, the Bloch character is trivial, and the EAW band emanates at zero
frequency at the Γ-point. In case 2, the Bloch character is −1 with respect to a primitive lattice
translation, and the EAW hence emanates at zero frequency at the corner of the Brillouin zone.

With these preliminary considerations in mind, we first revisit the pcu-c double net. As the
pcu-c evidently belongs to case 2 above, with a primitive body-centered cubic lattice translation
interchanging nets, the EAW band emanates at zero frequency at the H point [66]. Since H lies along
the cubic ⟨100⟩ direction, any state at the center of the surface Brillouin zone (with vanishing lateral
k) of a (100) inclined slab is therefore made by a superposition of counter-propagating EAW modes
along Γ-H. The behavior in the quasi-static limit now further yields the irreducible representation,
or irrep, of the electric field with respect to the group of the wave vector [48], which is the C4v

point group in this case. Since all elements of C4v do not interchange networks and the individual
networks are on constant potential in the quasi-static limit, the EAW irrep is trivial. Therefore,
the homogenized field cannot have a component perpendicular to the wave vector direction, as these
would transform with a non-trivial 2D E irrep. The fields must be longitudinal from a symmetry
perspective over the whole EAW and Langmuir bands, which are glued together and form one band.

The srs-c is of case 1 above, and the EAW band emanates at the Γ-point of the body-centered
cubic Brillouin zone at zero frequency. The bandstructure along Γ−H (k= k ex with k ∈ [0, 2π/a])
for wire radius of 0.02a is shown in Fig. S4 (a). It agrees perfectly with the HDP prediction for
the corrected pressure parameter of κ≈0.675 for the wire radius of 0.02a over the whole band. This
can be understood as follows: The group of the wave vector is again C4v, which is isomorphic to
the abstract group G4

8 in [67]. Considering the quasi-static potentials, the EAW band must be even
with respect to the C42 screw rotation and the C2 rotation (which maps every single net onto itself)
and odd with respect to the glide mirror planes (which interchange networks). It, therefore, has
the 1D representation R2 in G4

8. At the H point, the EAW joins a 6-fold degenerate point, which
transforms according to the R14 representation in G4

96, which splits equally into the 4 1D and one

3In other words, we have S=(P |t) in Seitz notation with a point symmetry P ̸=1 and a translation part t, which
might be non-zero (screw axis or glide mirror for example).

4S=(1|T) in Seitz notation, where T must be a primitive lattice vector.
5This case is always possible for unbalanced double nets as, for example, the qtz-qzd double net [65].
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Fig. S4: EAW mode characterization for the srs-c double net along the Γ-H path (parametrized by
k= k ex). (a) Dispersion relation compared to the HDP prediction with limiting (1/

√
3) and radius

corrected (0.675) κ. (b) Averaged field components normalized by averaged field intensity parallel to
k ([100]) and along perpendicular high symmetry directions.

2D representations along Γ-H: R14(G
4
96)=

∑5
i=1 Ri(G

4
8). This allows the R2 representation to form

a pair with its time reversal symmetric R4 representation to form a back-folding at H with finite
and opposite slopes of the two bands. As in the pcu-c scenario, the longitudinal EAW behavior is
protected by symmetry. Since the group of the wave vector contains a C42 screw axis and diagonal
glide mirrors that both contain a shift along the propagation direction, only the non-symmorphic
wallpaper subgroup p2gg (number 8 in [69], with isogonal C2v point group, can be employed to
make a general prediction regarding the homogenized fields. Considering the quasi-static potentials
again, we obtain an even symmetry classification with respect to the C2 symmetry in p2gg. This
classification evidently does not permit homogeneous field components perpendicular to the direction
of the wave vector. The odd symmetry behavior with respect to the glide mirror symmetry in p2gg,
on the other hand, prohibits a homogenized field component along k. For the srs-c, we, therefore,
expect a truly vanishing homogenized electric field that extends over the whole EAW band. This
vanishing field is demonstrated in Fig. S4 (b) within the numerical precision of the simulations (note
the logarithmic y-axis).

Similar to the pcu-c, the dia-c network with simple cubic Pn3m symmetry belongs to case 2
above. The EAW band, therefore, emanates at the simple cubic R-point [67]. Consequently, the
EAW band lies outside of the light cone along the cubic ⟨100⟩ and ⟨110⟩ directions and cannot lead
to BICs. For a slab with (111) inclination, however, the EAW band along the path connecting R

with Γ (k=(
√
3π
a −k) 1√

3
(1, 1, 1)⊺ with k ∈ [0,

√
3π
a ]) lies at the center of the surface Brillouin zone.

The low-frequency dispersion agrees again perfectly with the HDP prediction with corrected κ≈0.675
as shown in Fig. S5 (a). It, therefore, yields BICs by the same mechanism as exploited in the pcu-c
case with slab inclination of (100), assuming a longitudinal homogenized electric field. Such a field is
guaranteed by the trivial symmetry classification of the mode with respect to the C3v group of the
wave vector6, which only allows a homogenized field parallel to k. This longitudinal nature is once
again demonstrated through full-wave simulations in Fig. S5 (b).

S4 Analytical quasi-BICs and transmission spectra

We here derive an analytical model that reveals the connection between the EAW bulk picture and
the slab modes. It generates a good prediction for the quasi-BIC modes and the transmission spectra.
Let us first solve the scattering problem using two counter-propagating EAW slab modes only. We
first define the two vacuum domains I and III, semi-infinite in z-direction and infinite in x and y, and
the DNM slab domain II. As the electromagnetic fields vanish in the HDP model, we need to extract
fields at the domain interfaces from the simulations. The EAW fields in the DNM exhibit longitudinal

6Even though Pn3m is non-symmorphic, the elements of the group of the wave vector (labelled 1, 5, 9, 38, 43 and
48 in [68] are pure mirrors and rotations through the crystallographic origin.
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Fig. S5: EAW mode characterization for the dia-c double net along the R-Γ path (parametrized

by k=(
√
3π
a −k) 1√

3
(1, 1, 1)⊺). (a) Dispersion relation compared to the HDP prediction with limiting

(1/
√
3) and radius corrected (0.675) κ. (b) Averaged field components normalized by averaged field

intensity parallel to k ([111]) and along perpendicular high symmetry directions.

electric fields and vanishing magnetic fields, as evident from Eq. (S25) and Fig. 2(a) in the main text.
To solve the homogenized Maxwell equations (which is equivalent to cutting the Rayleigh series at the
fundamental Bragg order) at the slab surface, however, we need to average the fields over this surface
rather than the whole unit cell [57]. Considering an in-plane wave vector q along the x direction,
we obtain a homogenized electric field pointing along x and a magnetic field pointing along y. This
behavior is consistent with the symmetry classification for the mirror-symmetric DNM and means
that the EAWs only couple to p polarized waves in the vacuum domains. One further obtains that the
surface impedance Z :=Ex/Hy is largely independent of the frequency and, consistent with optical
reciprocity, quadratically depending on q in good approximation. For an EAW wave propagating in
positive z direction, we obtain

Z2 ≈ 2.5
( qa
2π

)2
.

The vacuum impedance, in contrast, is frequency dependent and finite at vanishing q, with

Z1 =

√
1−

(cq
ω

)2
for a wave propagating in positive z direction.

We assume a slab of thickness d=Na and the wave numbers in propagation direction are in
vacuum k1 :=

√
(ω/c)2 − q2, and in the slab k2 :=

√
[ω/(κc)]2 − q2, using Eq. (S1.3) for equal wire

thickness of 0.08a (κ≈ 0.72). The non-vanishing field components for the scattering problem can
thus be expressed as

HI =
(
eık1(z+d/2) + re−ık1(z+d/2)

)
eıqx , (S27a)

EI = Z1

(
eık1(z+d/2) − re−ık1(z+d/2)

)
eıqx , (S27b)

HII =
(
Aeık2z +Be−ık2z

)
eıqx , (S27c)

EII = Z2

(
Aeık2z −Be−ık2z

)
eıqx , (S27d)

HIII = teık1(z−d/2)eıqx , (S27e)

EIII = Z1te
ık1zeıqx . (S27f)

(S27g)

The homogenized Maxwell equations are satisfied if the fields match at both interfaces at z=±d/2,

xii



Fig. S6: Analytical transmissivity through an N =5 DNM slab using the HDP dispersion Eq. (S1.3)
and a homogenized DNM impedance.

yielding a standard scattering problem
Z1 0 Z2p2 −Z2/p2
0 −Z1 Z2/p2 −Z2p2
−1 0 p2 1/p2
0 −1 1/p2 p2




r
t
A
B

 =


Z1

0
1
0

 , (S28)

with p2 := exp{−ık2d/2}. The resulting transmissivity T = |t|2 is shown in Fig. S6. It agrees well with
the numerical full wave results in Fig. 3 (d) in the main manuscript, except for a small region close to
the light line. Here, the transmission is overestimated significantly as the surface field homogenization
breaks down, particularly at large frequencies.

The same fundamental idea can be employed to calculate the quasi-BIC bands. For this, we
consider only outgoing waves in the vacuum domains, which transport energy away from the slab,
that is, with ℜ{k1}<0 [>0] in region I [III]. We can characterize the quasi-normal modes as even
or odd regarding the z 7→−z mirror symmetry of the homogenized slab, substantially reducing the
complexity of the problem. In particular, one only needs to consider the fields in one vacuum domain
and the even or odd superposition of EAW modes in the slab. The fields are thus expressed by

HI = Ae−ık1(z+d/2)eıqx , (S29a)

EI = −Z1e
−ık1(z+d/2)eıqx , (S29b)

HII =
(
eık2z ± e−ık2z

)
eıqx , (S29c)

EII = Z2

(
eık2z ∓ e−ık2z

)
eıqx . (S29d)

For convenience, we have here normalized the eigensolutions such that the positive EAW wave in
the slab carries a coefficient of 1. The matching conditions at the slab surface thus yield

A = p2 ±
1

p2
(S30a)

−Z1A = Z2

(
p2 ∓

1

p2

)
. (S30b)

At the Γ-point (q=0), we immediately obtain A=0 from Eq. (S30b). This implies a modal
solution with a vanishing homogenized field outside of the slab and thus an infinite quality factor, in
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Fig. S7: Bandstructure and quality factor of the quasi-BIC bands for a N =5 DNM slab using the
HDP dispersion Eq. (S1.3) and a homogenized DNM impedance.

other words, BICs. Eq. (S30a) further yields p22 = ∓1, which reproduces the BIC frequencies obtained
from the HDP model under hard wall boundary conditions, that is,

ωa

c
=

κπn

N
(n ∈ N) .

For arbitrary q, Eq. (S30a) and Eq. (S30b) yield a finite A and are transcendental in the complex
frequency. They, therefore, need to be solved numerically. We divide Eq. (S30b) by Z1 ̸=0 and add it
to Eq. (S30a) to obtain

f(ω) := (Z1 + Z2) p2 ± (Z1 − Z2) /p2 = 0 .

Since f(ω) is holomorphic, except when crossing the light line, we employ a standard Newton
method using ωn as starting guess for qn+1 = qn+δq (n∈N) to obtain the quasi-BIC bands and
corresponding quality factors Q :=ℜ{ω}/(2ℑ{ω}) in Fig. S7. As expected, the bandstructure and
quality factors predict the position and width of the transmission bands in Fig. S6, respectively.

S5 Lifting BICs by breaking local symmetry

Throughout this work, we have considered the metals constituting the DNMs as perfect electric con-
ductors so that surface currents flow on the metallic wires and determine the microscopic electromag-
netic modes. We have shown in Sec. (S5) that the surface current density forms two quadrupole-like
distributions, which are robust against global symmetry breaking. These quadrupole currents are in
the 1D representation of the C4v point group labeled B1 in [48], and thus cannot couple to vacuum
radiation, which is in the 2D E representation. However, the BICs can be destroyed by breaking the
local C4v symmetry of the individual nets in the DNM. We demonstrate this by introducing an thick
metal cylinder segment on the lateral wires along the x and y directions normal to the slab direction z
(Fig. S8(a)). These additional cylinders are arranged in such a way that the C4v symmetry is reduced
to a single mirror plane on the x−y diagonal. For simplicity, we leave the other net unperturbed. The
broken local symmetry, reduced to merely a mirror group, enables couplings of the EAW mode to
vacuum modes. When compared to the DNM with two identical unperturbed wire meshes, the slab
formed by the perturbed DNM (Fig. S8(c)) degrades the BIC modes at the Γ-point to quasi-BICs
with finite Q-factors (Fig. S8(d)). It is, however, worth noting that the perturbed DNM slab can still
be well described by the HDP theory, as illustrated by the bulk bandstructure along the out-of-plane
z direction in Fig. S8(b), which retains the typical EAW band.
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Fig. S8: (a) Schematic diagram of a DMN with broken local C4v symmetry; the radius of the added
thick metal cylinder is 0.12a, while the radius of the unperturbed net is 0.02a. (b) Corresponding
dispersion relation of (a); the black dots are from a full wave simulation, the blue line is the 1/

√
3

slope. (c) DMN slab with (left) and without (right) breaking the local symmetry. (d) Q-factor of
the nets shown in (c). The Q-factor diverges at the Γ-point for the unperturbed network (red line),
which is indicative of the existence of BICs. In contrast, the Q-factor stays finite for the network
with strong local symmetry breaking (blue), showing quasi-BIC behavior only.

On the other hand, the nature of the quasi-BICs necessarily imposes changes in polarization struc-
ture in the far field. Compared with the ‘star’ polarization pattern of the BICs in the unperturbed
structure (Fig. S9(a)), the perturbed DNM slab exhibits a richer polarization distribution, forming
two patches of elliptically polarized states with opposite handedness, separated by a diagonal linear
polarization line (Fig. S9(c)). The position of this line on the diagonal is evident from the fact that
the in-plane components of both the dominating longitudinal currents and the quadrupole currents
are even with respect to the remaining mirror if the mirror coincides with the plane of incidence,
that is if the wave vector is invariant. Thus, the far field must obey the same symmetry classifica-
tion, that is, it must be p polarized, with the electric field confined to the plane of incidence. In all
other directions, the EAW field is a combination of even (quadrupole currents) and odd (in-plane
longitudinal currents) contributions, and thus the far field is generally elliptically polarized.

The mirror plane divides the x−y plane into two half-planes of opposite elliptical polarizations,
which is immediately evident from the action of mirror symmetry σd on the modes on one half-plane.
The vortex at the origin splits into two circular polarization points on either side. This mechanism is
similar to the one reported in [7]; it is of topological origin. The appearance of the circular polarization
points becomes evident from tracing the polarization on various momentum space circles of different
radii centered around the Γ-point (Fig. S9(c)). The polarization path projected on the Poincaré
sphere goes twice through the linear polarization state on the mirror plane. It unfolds from a small
figure-of-eight (turquoise, small radius) towards a double-loop around the equator (gray, large radius).
It thus necessarily passes through the north/south poles (Fig. S9(d)).

Fig. S9 further indicates that the circularly polarized points lie on the axis perpendicular to the
remaining mirror plane. We can understand this behavior from a symmetry perspective. Consider
the action of the time-reversal operator τ , which transforms the slab mode with wave vector k∥
into one with −k∥ and complex conjugated field, that is τEk∥ =E∗

−k∥
. On the other hand, the

mirror symmetry interchanges the field’s x and y components and maps k∥ to its negative on the
line perpendicular to the mirror plane. The combined operation τσd thus leaves k∥ invariant on this
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Fig. S9: (a) 2D far-field polarization pattern of BICs in DNMs. (b) Polarization along a circle in
(a), projected onto the Poincaré sphere. (c) Far-field polarization pattern of the quasi-BIC for the
perturbed DNM. (d) Polarization projected onto the Poincaré sphere along the circles shown in (c).

line. We thus obtain Ex
!
=E∗

y , so that the normalized in-plane electric far-field depends on one free
parameter φ only,

E∥ =
1√
2

(
eıφ

e−ıφ

)
.

In other words, the field stays on a line of constant longitude on the Poincaré sphere, connecting
linear polarization along the mirror plane (φ=0 at Γ) and perpendicular to it (φ=±π/2 far away
from Γ). It must therefore pass the circularly polarized poles (φ=±π/4) on either side of the mirror
plane.

S6 Quadrupole-like currents in DNMs with different param-
eters

The surface current densities of the two nets in DNMs parallel to the propagation direction, with
opposite signs, resulting in a vanishing homogenized electromagnetic field when approaching the Γ-
point, as shown in Fig. 2 in the main text. Meanwhile, small currents flow in the wires oriented
perpendicularly to the propagation direction, which we refer to as x w.l.o.g., at finite frequencies.
The pcu-c DNM with body-centered cubic symmetry has a global C4v symmetry through the center
of each wire. Since the currents in the x wires are constant along the wire surface, they transform
trivially under the corresponding C4v symmetry. Consequently, the weak EAW currents in the wires
in the y-z plane must transform trivially as well, and therefore either all flow towards the nodes or
away from them in a 4-fold quadrupole-like fashion. This expected behavior is demonstrated through
the surface current densities obtained from full wave simulations, whose y component is shown in
Fig. S10 (a) and the z component in Fig. S10 (d).

Notably, the in-plane geometry of the individual nets dominates the electromagnetic distribution
since the currents on the two nets experience very weak inter-coupling at low frequencies. The local
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Fig. S10: y and z components of surface current densities Js of DMNs with different parameters
near the static limit at kx =0.05π

a and ky = kz =0. (a), (b)and (c) show the Jsy distribution, while
(b), (d), and (f) show Jsz. DNM parameters for (a) and (d) are (0.08 , 0.08 , 0.5); for (b) and (e)
(0.08 , 0.08 , 0.33); for (c) and (f) (0.08 , 0.02 , 0.5).

C4v symmetry of every single net thus guarantees the formation of the aforementioned quadrupole-like
current distributions, even in the absence of a global C4v symmetry. We demonstrate this behavior
through the current distributions shown in Fig. S10 (b) and (e) for DNMs with a non-symmetric shift
and in Fig. S10 (c) and (f) for distinct wire radii. To a very good approximation, these fields retain
their trivial character with respect to the individual net’s C4v symmetry.

Importantly, this trivial character is evidently incompatible with the free space photon modes,
which carry the non-trivial character of the E± (right and left circular polarization) irreducible
representation [38].

S7 EAWs BICs in real Metallic DNMs

In this supplementary section, we present additional simulations that account for the impact of metal
losses on Electron Acoustic Wave (EAW) quasi-Bound States in the Continuum (BICs).

To conduct our simulations, we utilized copper as the material due to its widespread usage and
cost-effectiveness in practical applications. Copper has a known conductance of 5.96 × 107S/m at
mircowave frequencies, making it a suitable choice for our investigations.

Our study considered two configurations: DMN slabs and sub-wavelength DMN resonators. The
DMN slab parameters were derived from Figure 2(c), with P=(0.4, 0.4, a/2), and for simplicity, we
set N=5. By illuminating one side with a plane wave, we observed the reflectivity at various angles
(wave vectors k). In the lossless scenario, where the constituent metals can be approximated as a
perfect electric conductor (PEC),Fig. S11 (a) displays the square of reflectivity (indicating power) for
the fourth band branch. The frequencies associated with this branch are approximately 16.3GHz at
different wave vectors (small k) in the lossless case. As the wave vector (incident angle) decreases, the
half bandwidth narrows. Notably, under normal incident conditions, BICs emerge without coupling
to the surrounding environment.

To assess the impact of metal losses, we performed simulations considering the conductive proper-
ties of copper. Fig. S11 (b) demonstrates the square of the reflectivity curve in the presence of losses.
As expected, the half bandwidth of the indicating power curve narrows as the wave vector (k vector)
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Fig. S11: (a) lossless DMNs and (b) lossy DMNs; The plot showcase the square of S11 parameter
(reflectivity) indicating power in the function with frequency. Different wave vectors (k), also depicted
using distinct colors (yellow, blue, and red), representing k = 0.1π/a, k = 0.05π/a, and k = 0,
respectively.

Fig. S12: Scattering cross section in lossy cubic DMNs resonators

decreases, ultimately converging to the Q-factor of the intrinsic resonator mode. Remarkably, even
with the presence of losses, bound states in the continuum (BICs) persist when the wave vector (k)
equals 0, highlighting their robustness against metal losses.

Importantly, our design was at 10GHz. range, where metal losses are relatively large. It should
be noted that DMNs can be scaled up to larger lattice constant, resulting lower resonance frequencies
where metal losses are considerably lower.

In addition to our investigation of DMN slabs, we also studied quasi-BIC resonances in a loss cubic
DMN micro-resonator. Our simulation, as shown in Fig. S12, reveals a slightly asymmetric Fano
resonance dip in the scattering cross section (SC) at the fundamental quasi-BIC mode, occurring at
a frequency of 7.54GHz. Remarkably, this resonance exhibits a high Q-factor of 750, considering a
cube’s edge length of 12.5 mm. Similar to the slab configuration, the quasi-BIC states in the cubic
micro-resonator manifest themselves as resonances in the scattering cross sections. It is worth noting
that the physical size of this resonator is extremely small, on the order of a few unit cells. This
characteristic stands in stark contrast to previously reported quasi-BIC resonators that were purely
dielectric in nature.

Overall, our results indicate that EAW quasi-BICs hold promise for various technological advance-
ments, even in the presence of metal losses. The demonstrated robustness and high Q-factor make
them a compelling option for applications in diverse fields.

xviii


	Plasma and metallic-network meta-material modes
	Single plasma fluid model 
	Metallic network metamaterial modes 
	Hydrodynamical double plasma fluid model 
	Plasmonic double net metamaterials 

	 Bandstructure of DNMs with different parameters
	Different double network geometries
	 Analytical quasi-BICs and transmission spectra
	Lifting BICs by breaking local symmetry
	 Quadrupole-like currents in DNMs with different parameters
	 EAWs BICs in real Metallic DNMs

